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ABSTRACT: The strain rate–dependent finite deforma-
tion behavior of three types of rubber under tension and
compression are experimentally characterized using a Hop-
kinson bar. Based on the measured data, a frame-indepen-
dent incompressible visco-hyperelastic constitutive equation
is proposed to describe the tensile and compressive re-
sponses of rubber under high strain rates. The equation
comprises two parts: a three-parameter component based on
an elastic strain energy potential, to characterize static hy-
perelastic behavior, and another with four parameters, de-
veloped from the BKZ model, to define rate sensitivity and

strain history dependence. Established static and dynamic
experimental techniques are employed to determine the
seven parameters in the constitutive relationship. Compari-
son of predictions based on the proposed model with exper-
iments shows that it is able to describe the visco-hyperelastic
behavior of rubber-like materials under high strain rates.
© 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 523–531, 2004
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INTRODUCTION

Rubber is commonly employed for vibration isolation, in
mechanical energy dissipation devices, and as shock ab-
sorbers. It is well known that the mechanical behavior of
rubber-like materials is rate dependent.1,2 Ward3 and
Drozdov and Kolmanovskii4 have introduced a number
of methods to describe rate-dependent behavior. How-
ever, experimental data on rubber-like materials have
essentially been related to creep, relaxation, or deforma-
tion at very low strain rates (�10°/s). High deformation
rate responses appear relatively less extensively studied.
Mechanical properties at high strain rates are difficult to
establish and most conventional testing machines use
hydraulic actuators only capable of generating low, and
at best, intermediate rates of strains (up to the order of 1
s�1). For high strain rate loading, the Split-Hopkinson
Bar (SHB) is commonly used and is capable of obtaining
stress–strain data with good reliability up to a strain rate
of about 104 s�1. Rubber is generally compliant; therefore
the stress transmitted to the output bar is too small to be
detected by normal SHB devices that utilize metallic
bars. In the present study, this limitation is overcome by
using polycarbonate bars instead of metal ones,5 so that
the difference in mechanical impedance between the
bars and rubber is smaller. The stresses transmitted to
the output bar are thus sufficiently large to be measured.

Difficulties encountered in dynamic tensile testing
of rubber relate to slippage of specimens from clamps,
because of the large strains that can be induced (more
than 400%). This may be the reason why there appears
to be very little reported on the tensile behavior of
rubber under high strain rates. The current investiga-
tion involves the design of a specimen-clamping de-
vice for tensile SHB tests on soft, compliant materials.
The dynamic compressive behavior of rubber-like ma-
terials has been studied,6 where a rate-dependent con-
stitutive equation has been proposed, based on mea-
sured stress–strain data; this was subsequently used to
simulate the response of rubber under three-dimen-
sional impact loading. However, current test data
show that this model, based on compressive test data,
is inadequate in describing tensile response. There is
therefore a need to develop a description that incor-
porates both dynamic tensile and compressive behav-
ior. Experiments show that specimens essentially re-
gain their original geometry after unloading and re-
sidual strains are negligible, even when the maximum
compressive engineering strain induced is larger than
50% and maximum tensile engineering strains exceed
450%. This indicates that the behavior observed is
amenable to description by a visco-hyperelastic mate-
rial model. This study focuses on the formulation of a
frame-independent visco-hyperelastic constitutive
model to define the behavior of rubber.

EXPERIMENTS

The rubber used in this study is industrially known as
Silicone Rubber and comes in various degrees of stiff-
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ness, as defined by a Shore Hardness value–e.g., 40,
60, 80–a larger number depicting a higher stiffness.
Rubber of three stiffnesses, SHA-40, SHA-60, and
SHA-80, were studied; specimens were cut from 2.5-
mm-thick sheets measuring 150 mm � 150 mm. Dies
were used to punch out 8-mm-diam. circular discs for
compression tests and dog bone–shaped specimens
for tensile tests. Quasistatic stress–strain curves for
tension and compression were obtained using an In-
stron universal testing machine. The strain rate in-
duced was about 10�2/s, and the results are shown in
Figures 1-3.

For dynamic tensile tests, a modified SHB was used.
This comprised a pendulum-based striker and poly-
carbonate input and output bars. Polycarbonate bars
were used to reduce mechanical impedance mismatch
with the relatively compliant specimens. A pair of
strikers connected to the pendulum made contact with
a block connected to the input bar via a short polycar-

bonate rod, threaded at both ends. This sacrificial
piece fractured upon impact, generating an approxi-
mately rectangular tensile pulse in the input bar. Poly-
carbonate adaptors (Fig. 4), designed to hold the spec-
imen, were connected to the input and output bars by
screw threads. Specimens were sandwiched between
the two halves of component C, which in turn was
held in place by component B. Component B was
threaded such that, upon tightening into component
A, it would squeeze the two halves of component C
together, thus gripping the specimen even more tightly.
The tensile stress–strain curves obtained from this exper-
imental arrangement are shown in Figures 1(a)—3(a).

Dynamic compression tests were carried out using a
Split Hopkinson Pressure Bar (SHPB). Polycarbonate
input and output bars were also used, but there was
no need for adaptors to clamp the specimens. The
dynamic compressive stress–strain curves obtained
are shown in Figures 1(b)—3(b).

Figure 1 Comparison between theoretical curves and experimental data for (a) SHA40 rubber under tension and (b) SHA40
rubber under compression.

Figure 2 Comparison between theoretical curves and experimental data for (a) SHA60 rubber under tension and (b) SHA60
rubber under compression.
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Figures 1–3 show that the behavior of rubber under
compression and tension is rate-dependent–there is an
enhancement of stress when the deformation rate is
increased. Test measurements also show that the re-
sidual strain in specimens after unloading is negligi-
ble. It is thus expected that a visco-hyperelastic mate-
rial model is appropriate for characterization of the
observed behavior.

HYPERELASTICITY

The rate-independent hyperelastic constitutive equa-
tion for rubber under compressive loading, proposed
by Yang et al.,6 is used as a starting point. It is hy-
pothesized that this constitutive model can also be
used to characterize tensile behavior.

Consider a point initially located at some position X
in a material. Displacement to a new position x after
deformation results in a deformation gradient F de-
fined by F � �x/�X. Deformation of the material can
be described by the left Cauchy-Green deformation
tensor B (� F � FT), or by the right Cauchy-Green
deformation tensor C � FT � F), which is related to the
Green strain E � (C � I)/2. The three invariants of B
are defined by: I1 � tr(B), I2 � [I1

2 � tr(B2)]/2 and I3
� det(B). It is reasonable to assume that rubber-like
materials are incompressible, which results in I3 � 1.

Following the analysis of Yang et al.,6 the constitu-
tive relationship for an isotropic incompressible hy-
perelastic material can be expressed as:7

�e � �peI � �1B � �2B � B (1)

where pe is the pressure, �1 � 2(�W/�I1 � I1�W/�I2),
�2 � �2�W/�I2 and �e is the Cauchy stress tensor. W
� W(I1, I2) is a strain energy potential, which is as-
sumed to be representable by a polynomial series
involving (I1 � 3) and (I2 � 3); it is found that three
terms in the polynomial series are sufficient to fit the
compressive test data; i.e.

W � A1�I1 � 3� � A2�I2 � 3� � A3�I1 � 3��I2 � 3� (2)

where A1, A2, and A3 are parameters determined via
one-dimensional tests. Consider uniaxial loading of a
specimen, whereby the stretch in the loading direction
is denoted by �; the principal stretches are �1 � �, �2
� �3 � ��1/2. The resulting deformation gradient F
and the left Cauchy-Green deformation tensor B (for
uniaxial loading, B � C) are:

F � � � 0 0
0 ��1/2 0
0 0 ��1/2 �, B � F � FT

�� �2 0 0
0 ��1 0
0 0 ��1 � (3)

From eqs. (1) and (2), the expression for stress under
uniaxial loading is:

�11
e � �pe � �1B11 � �2B11

2 (4)

where �1 � 2[A1 � A2I1 � A3(I1
2 � 3I1 � I2 � 3)], �2

� �2[A2 � A3(I1 - 3)], and �11
e is the Cauchy (true)

stress. (The engineering stress �11
0 is related to the true

stress by �11
e � ��11

0 .) The hydrostatic pressure pe is

Figure 3 Comparison between theoretical curves and experimental data for (a) SHA80 rubber under tension and (b) SHA80
rubber under compression.

Figure 4 Polycarbonate adapter for dynamic tension tests.
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obtained from the condition �22
e � �33

e � 0, together
with the relation B22 � B11

�1/2:

�22
e � 0 � �pe � �1B11

�1/2 � �2B11
�1 (5)

This constitutive relationship, applied to one-dimen-
sional loading, is defined by combining eqs. (4) and
(5); this can be written as a function of the stretch �,

�11
e � 2��1 � ��3��A1� � A2 � A3	I1 � 3 � ��I2 � 3�
�

(6)

The relationship between stretch � and engineering
strain �11 in the direction of the uniaxially applied load
is � � 1 � �11. Stress–strain curves from quasistatic
compression and tensile tests, as shown in Figures 1–3,
are used to determine the parameters in eq. (6), by
adopting a simple least squares approach. Values of
the parameters A1, A2, and A3 for the three grades of
rubber are presented in Table I. Comparisons between
the theoretical curves and test data, expressed in terms
of true stress and engineering strain, are shown in
Figures 1–3. The good correlation exhibited for all
three materials substantiates the validity of the pro-
posed hyperelastic constitutive equations in describ-
ing the compressive and tensile responses of rubber-
like materials.

VISCO-HYPERELASTICITY

It is postulated that visco-hyperelastic behavior arises
from a combination of hyperelasticity and viscoelas-
ticity, whereby the total stress is the sum of these
components, i.e.,

� � �e � �	 (7)

where �e is the quasistatic hyperelastic response de-
fined by eq. (1) and �v characterizes the rate-depen-
dent properties of the material.

Characterization of rate-dependent behavior

A primary characteristic of viscoelastic materials is the
effect of previous deformation; the stress state de-
pends on the strain and/or strain rate histories. The
constitutive relationship for a homogeneous, isotropic,

and incompressible material can be expressed in the
following form:8

�	 � �p	 � F�t� � �

���

t

�C�
�� � FT�t� (8)

where �v is the Cauchy stress tensor, pv is the pressure
in the viscoelastic material, and � is a matrix func-
tional that describes the effect of strain history on
stress; this relationship for �v is frame-independent.
Approximations to represent the functional � have
been proposed for solids and these are described in
the work by Lockett8 and more recently by others
(e.g.,4,9). From these studies, a significant result was
that relatively few parameters are needed to model
finite strain viscoelastic material behavior. A number
of nonlinear viscoelastic constitutive models have
been introduced in the monograph by Carreau et al.9

An area of focus with respect to viscoelastic models is
to simplify the function �; for example, the BKZ
model10,11 and its applications.12 The rate-dependent
functional � approximated by the BKZ model has the
following form:

�BKZ � I �
��

t

A�t � 
�
d
d


tr�E�
�� d


� 2 �
��

t

B�t � 
�Ė�
� d
 (9)

where A and B are functions of time and strain rate is
defined by Ė � 1

2 Ċ � 1
2 (ḞT � F � FT � Ḟ) and

(d(tr(E(t)))/dt � 1
2 İ1

C, where I1
C is the first invariant of C.

It is assumed that the functions A(t) and B(t) have
the same form depending on the argument, namely:

A�t� � 2A5m�t� and B�t� � A6m�t� (10)

where A5 and A6 are constants and the relaxation
function m(t) decreases with t. In general, m(t) is an
exponential series described by :

m�t � 
� � �
i�1

N

exp��
t � 


�i
� (11)

TABLE I
Parameters in Proposed Stress–Strain Equation

Material A1 (MPa) A2 (MPa) A3 (MPa) A4 (MPa) A5 (MPa) A6 (MPa) A7 (�s)

SHA40 0.128 0.285 0.0106 0.00125 �0.0451 0.0967 136.6
SHA60 0.174 0.505 0.0299 0.00186 �0.0958 0.176 232.6
SHA80 0 1.451 0.0924 0.00172 �0.470 0.514 285.7
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where �i is the relaxation time. Note that the response
of a Maxwell material model is described by an expo-
nential term and eq. (11) can be considered as the
response of several Maxwell elements connected in
parallel. N has been assigned a value of 2 by several
researchers,13,14 whereby one relaxation time is used
to describe behavior at low strain rates (10�4 
10�1/s) and another to characterize behavior at high
strain rates (102  103/s); this is designated as the
“ZWT” model. In the version proposed by Osaki et
al.15 a value of N � 5 was assumed, while Wagner16

selected N � 8. It has been reported17 that the relax-
ation times depend on the microstructure of the ma-
terial. Motion within the microstructure, which deter-
mines the relaxation time, is activated by a corre-
sponding loading rate. From the viewpoint of the
macromechanical behavior of materials, the relaxation
time recorded in a test depends on the loading time or
rate. For many polymeric materials deformed at strain
rates generated by conventional SHPB devices, the
mechanical response can be adequately described by a
single relaxation time.13,14 In general, a good material
model would not require an excessive number of pa-
rameters to describe the essential features of the ma-
terial. Hence, in this study, only one relaxation time is
used in eq. (11); i.e., N � 1.

Time is taken with reference to the instant loading
commencement and it is assumed that the effect of
deformation history on stress for 
 � 0 is ignored.
Thus, the deformation history considered to affect the
stress response–i.e., the limits of integration in the
second term in eq. (9)–become [0,t] rather than (��, t].
Substituting eqs. (10) and (11) with N � 1 into eq. (9)
results in the following proposed integral approxima-
tion for �BKZ,

�

���

t

BKZ�C�
�� � �
0

t

	A5İ1
C�
�I � 2A6Ė�
�
exp��

t � 


A7
� d


(12)

where A7 is a relaxation time, a material constant. For
incompressible materials, such as rubber in this inves-
tigation, the pressure in material may be undefined.
Thus, eq. (12) which defines �BKZ, is modified by
replacing the unit tensor I with C/I1

C to approximate
the response of incompressible materials:

�

���

t

�C�
�� � �
0

t �A5

İ1
C�
�

I1
C C � 2A6Ė�
��exp��

t � 


A7
� d


(13)

The relationship between the matrix functional � and
strain rate for one-dimensional stress and constant
strain rate conditions is now examined. The engineer-

ing strain rate, which is the same as the stretch rate �̇,
is related to the strain rate by Ė11 � ��̇, and to the rate
of the first invariant of C by İ1

C � 2�(1 � ��3)�̇. Thus,
for one-dimensional loading, eq. (13) yields:

�11 � 2A7��̇�A5

��3 � 1�

��3 � 2�
� A6��1 � exp��

t
A7
��

� f����̇�1 � exp��
� � 1

�̇A7
�� (14)

where f(�) � 2�A7{A5[(�3 � 1)/(�3 � 2)] � A6} and t
� (� � 1)/�̇ for a constant stretch rate. Equation (14)
shows that curves describing how �11 varies with �̇
for a constant � should be convex; i.e., (��11/
��̇)���const � 0 and (�2�11/��̇2)���const � 0. Eqs. (8), (9),
and (14) show that �11 is the stress component that
describes strain rate sensitivity, and the characteristics
of the �11  �̇ relationship should therefore be similar
to that of �11  �̇. Consequently, the convex property
of �11 described by eq. (14) should be observed in the
stress—strain rate curves derived from experiments.
However, this feature is not supported by the present
test results. From the experimental stress–strain
curves in Figures 1–3, curves of stress as a function of
stretch rate can be obtained and are displayed in Fig-
ures 5(a–c) for the three types of rubber. These show
that, in contrast to what is expected from eq. (14),
curves of stress versus stretch rate are concave; i.e.,
(��11/��̇)���const � 0 and (�2�11/��̇2)���const  0. Thus,
it is questionable whether eq. (14) [deduced from eq.
(13)] is suitable for describing the rate-dependent be-
havior of the rubber tested. Consequently, eq. (13)
should be modified so that a higher order of stretch
rate dependence is used to characterize the observed
behavior. Furthermore, Figures 1–3 show that the
compressive behavior is much more rate-sensitive
than the tensile response for a common magnitude of
engineering strain (e.g., for engineering strains less
than 50%, the dynamic and static tensile stresses are
quite similar, whereas dynamic compressive stresses
are notably higher than quasistatic values). In the light
of present test data, this model [defined by eq. (13)] is
inadequate in describing the rate dependence of the
various grades of rubber examined. Therefore, a new
variant must be introduced to characterize the differ-
ence in the rate-dependent response between tension
and compression; this is done via the functional �. It
is noted that the time derivative of the second invari-
ant of C, İ2

C � 2(1 � ��3)�̇, can describe rate-dependent
behavior that is more sensitive to compression than
tension for any given magnitude of engineering strain.
Consequently, the following relationship, based on the
preceding analyses, is proposed to characterize the
behavior of rubber in the present study:
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Figure 5 Variation of true stress with engineering strain rate for a common engineering strain: (a) SHA40; (b) SHA60; (c)
SHA80.
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�

���

t

�C�
�� � �1 � A4İ2
C� �

0

t �A5

İ1
C�
�

I1
C C

� 2A6Ė�
��exp��
t � 


A7
� d
 (15)

where A4 is another material parameter.
Substitution of eq. (15) into eq. (8) yields a frame-

independent finite strain viscoelastic constitutive rela-
tionship for incompressible materials.

�	 � �p	I � �1 � A4İ2
C�F�t� � ��

0

t �A5

İ1
C�
�

I1
C C

� 2A6Ė�
��exp��
t � 


A7 � d
� � 	F�t�
T (16)

Visco-hyperelasticity

A combination of eqs. (1), (16), and (1) yields:

� � �pI � �1B � �2B � B � �1 � A4İ2
C�F

� ��
0

t �A5

İ1
C�
�

I1
C C � 2A6Ė�
��exp��

t � 


A7 � d
� � FT (17)

where p (� pe � pv) is the total pressure comprising
static and viscoelastic components. Ai, (i � 4. . . 7) are
material parameters that characterize the viscoelastic
response under high strain rates and are determined
from tests involving dynamic uniaxial loading of spec-
imens. For uniaxial loading, Ė11 � ��̇, İ1

C � 2�(1
� ��3)�̇ and İ2

C � 2(1 � ��3)�̇. Substitution of these
relations into eq. (17) yields the stress-deformation
relationship for the direction of loading:

�11 � �p	 � �11
e � �1 � 2A4�1

� ��3��̇��2 �
0

t

2��A5

�3 � 1
�3 � 2 � A6�exp��

t � 


A7
��̇ d


(18)

where �11
e is described by eq. (6) and p	 is determined

from the condition that the transverse stress �22 � 0,
allowing it to be written as:

p	 � �1 � 2A4�1 � ��3��̇���1 ��
0

t

��2A5

�1 � ��3�

�3 � 2

� A6�
�3�exp��

t � 


A7 ��̇ d
� (19)

Substitution of the preceding expression for pv into eq.
(18) yields the relationship between stress and defor-
mation in the direction of loading.

�11 � �11
e � �1 � 2A4�1 � ��3��̇��2 �

0

t

2��A5

�3 � 1
�3 � 2

� A6�exp��
t � 


A7
��̇ d
 � �1 � 2A4�1

� ��3��̇���1 �
0

t

��2A5

�1 � ��3�

�3 � 2

� A6�
�3�exp��

t � 


A7
��̇ d
 (20)

where the rate of stretching is equal to the engineering
strain rate; i.e., �̇ � �̇11. Dynamic uniaxial tests were
conducted on SHA40, SHA60, and SHA80 rubber
specimens. For SHA40 rubber, data corresponding to
average strain rates of 1,200/s, �1,100/s, and –3,300/s
(the negative sign denotes compression) were used to
determine the parameters Ai (i � 4. . . 7) via a least
squares fit. The values of these parameters are given in
Table I and a comparison between the fitted curves
and test data is shown in Figure 1. Substitution of the
values of Ai into eq. (20) facilitates the prediction of
stress–strain responses at high strain rates. Validity of
the proposed model is confirmed by conducting a
dynamic tensile test at a strain rate of 750/s and
comparing the experimental data with the curve gen-
erated by eq. (20). Figure 6 shows very good correla-
tion.

It should be noted that the values of A5 for the three
types of rubber listed in Table I are negative. Under
one-dimensional stress conditions, the term affected
by A5, [i.e., A5 [İ1

C(
)/I1
C]C in eq. (17)) is 2A5�(�3 � 1/�3

� 2)�̇, which is negative for both tensile and compres-
sive loading when A5 is negative; also its magnitude
increases with deformation rate �̇. Consequently, the
influence of this term, arising from deformation rate,
is such that the stress magnitude is enhanced for com-
pression but reduced under tension. This confirms
that the negative value of A5 obtained is consistent
with experimental observations (Figs. 1–3), particu-
larly that the compressive response is much more rate
sensitive than the tensile response for a given magni-
tude of engineering strain.

To further substantiate applicability of the analysis
to rubber of other hardnesses, the same procedure is
adopted for SHA60 and SHA80 rubber. One dynamic
tensile and two dynamic compressive experimental
stress–strain curves from SHB tests were again used to
determine the parameters Ai (i � 4. . . 7). The average
strain rates of the curves used for this were 1,200/s,
�1,100/s, and –3,300/s for SHA60 rubber, and
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1,200/s, �1,200/s, and –2,800/s for SHA80 rubber.
The resulting values of Ai (i � 4. . . 7) are also shown
in Table I. Comparisons of the respective fitted theo-
retical curves with test data for SHA60 and SHA80
rubber are shown in Figures 2 and 3. Again, confir-
mation of the validity of the proposed constitutive
relationship is provided by comparing predictions
with experiments. Substitution of the values of Ai into
eq. (20) facilitates prediction of stress–strain responses
at a (high) strain rate of 750/s for SHA60 rubber and
at 900/s for SHA80 rubber. These comparisons be-
tween predicted curves and test data are also shown in
Figure 6 and demonstrate that the proposed model is
well suited for the description of visco-hyperelastic
behavior of rubber-like materials loaded at high strain
rates.

CONCLUSION

The tensile and compressive behavior of three types of
rubber was experimentally characterized over a range
of strain rates: 10�2  103 /s. Stress–strain data shows
that the mechanical properties of rubber are viscoelas-
tic (strain rate dependent). By employing a fundamen-
tal approach to the formulation of constitutive rela-
tionships and using the BKZ model as a reference, a
novel constitutive equation was proposed to describe
the visco-hyperelastic behavior of incompressible rub-
ber-like materials under both tension and compres-
sion. Static response is accommodated by an expres-
sion comprising a hyperelastic relationship based on
an elastic strain energy potential. A three-term trun-

cated series for this potential was found to adequately
describe hyperelasticity of the material. Another ex-
pression, developed from the BKZ model, was intro-
duced to characterize viscoelastic response under high
strain rates, where the relaxation response is described
by a Maxwell element and the strain rate dependence
is nonlinear. Combining the expressions yielded a hy-
perelastic solid in parallel with a nonlinear viscoelastic
element, thus characterizing not only hyperelasticity
but also strain rate–dependent viscoelasticity. Stress–
strain curves generated by the model for three kinds of
rubber were compared with static and dynamic exper-
imental data. The comparisons show that the pro-
posed model is well suited for the description of visco-
hyperelastic behavior of rubber-like materials loaded
at high strain rates not only under compression but
also under tension.
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